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Program Specification Applied to a Text Formatter

MARTIN S. FEATHER

Abstract-Presentation of the fonnal specification of a small text for-
matter illustrates an approach to the construction of formal specifica-
tions. The key features of this approvach are described, and their
beneficial influence on the construction and organization of specifica-
tions of tasks, especially those for which no concise descriptions are
possible, are discussed. The intent is that in addition to serving as
formal descriptions of tasks, such specifications will be of use in the
processes of verification, development, and maintenance of their
implementations.

Index Terms-Applicative programming, program reliability, program
specification, programming techniques,- program transfornation.

I. INTRODUCTION
A SPECIFICATION differs from an implementation in that

there is no need for it to be efficient in the computa-
tional sense; rather, our sole aim in constructing a specification
shpuld be to maximize our confidence that the specification in
fact denotes the beh;avior we desire. Within this paper we will
be concerned with activities for which no concise specification
is available-in such cases we must expend effort to develop a
well-organized speciflcation so that despite its size it is never-
theIess comprehensible.
Our interest in specification derives from work on program

transformation, in particular transformation based upon the
methods for manipulating recursion equations, as developed
by Burstall and Darlington [9]. From this work Burstall was
motivated to create a simple recursion-equation programming
language, NPL [8]. We have used NPL as the language in
which to express our specifications, and will consider how its
use influenced our construction of specifications. NPL has
since been rationalized and extended to become a more power-
ful language, HOPE [101 . The work to be described here was
done during the lifetime of NPL; at the end we will comnaent
briefly on how HOPE's additional features might have been of
further help.
We consider one particular task, and show how, by using the

recursion-equation language and freeing ourselves from all con-
sideration of efficiency during design, we may emerge with a
good formal specification. The domain of the task is text
formatting; we limit our attention to the simpler end of this
domain, and adopt the set of features of an already defined
formatter as those we must specify. The formatter we adopt is
that described by Kernighan and Plauger [20, ch. 5]. -In this
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book the authors demonstrate, with the aid of examples, how
to organize one's approach to programming to go from an in-
formal task description to a reasonably efficient and well-
organized program to perform that task. Hence they provide
both an informal description of a text formatter, and a pro-
gram to do the formatting (written in Ratfor, i.e., prepro-
cessed Fortran). We will construct a formal specification of
their formatting task and investigate the benefits we claim for
such a formal description.

II. CONSTRUCTING SPECIFICATIONS
We see two main properties that a formal specification should

have.
1) It must in fact denote the behavior the writer desires.
2) It must serve as a clear description which can be read and

comprehended.
In the case of problems for which no concise specification is

apparent it becomes much more difficult to achieve both of
these goals. We feel that we have benefited from using NPL in
which to express our specifications, insofar as it has encour-
aged a clear organization of our specifications. The main fea-
tures of the language that we feel have provided this benefit
are as follows.

1) The applicative nature of the language leads to a style of
programming which is clearer and less error-prone. Destructive
operations, side effects, and iteration are mechanisms appro-
priate to achieving efficiency but reduce clarity, since their
inclusion renders communication between portions of the
specification much less transparent. A crucial need in the suc-
cessful organization of a large specification is to decompose it
into separate components, each of which may be understood in
isolation, and the communication between which is straight-
forward enough to permit comprehension of their combination.
2) The language is strongly typed and permits user defined

types. By making liberal use of types defined for the task
being specified we get suppoTt from the type-checker and pro-
vide additional helpful informnation to the reader.
3) Writing in recursion equations encourages decomposition

of the overall large problem into simpler subproblems, which
in turn may be decomposed, until finally we emerge with
many trivial problems each of which may be easily coded.
In the example to follow we will see the above influences in

action. The presence of these features is, of course, no guar-
antee that we will emerge with a suitable specification. We
must adopt a style which makes good use of them. To this
end, the freedom to disregard efficiency is of crucial impor-
tance. This underlies the crucial difference between our ap-
proach and that of structured programming. Whereas the
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latter is a means for developing a tolerably efficient program,
we are concerned (at' this stage) solely with developing a
specification. Hence, although we may indeed adopt some of
the organizational techniques of structured programming, we
will typically choose to decompose a problem in a radically
different manner, one better suited to satisfying the needs of
a specification.
We emphasize that no elements of our approach are new-

rather, we are following the techniques already suggested by
other researchers. Backus [2] has argued for the need to
escape from conventional imperative programming; Burge
[7] investigates recursive programming. The typed nature of
the language ML [19] influenced NPL. Noted texts on struc-
tured programming include [12] and [16]. Balzer etal. [3],
Bauer et al. [4], and Darlington and Burstall [14] advocate
developing programs by first constructing a specification and
then transforming to introduce efficiency.

III. THE EXAMPLE TASK
The example task we consider is a (small) text formatter.

This we chose as a reasonably well-understood task, one of
sufficient complexity that no concise specification is possible
(at least, none that we know of), hence suitable as a problem
for trying the method of developing a program by formal
specification followed by transformation.

A. Infornal Description ofa Text Fornatter
We give a (very) brief and informal account of the facilities

the text formatter is to provide.
Input to the formatter is a sequence of lines, where lines

consist of sequences of characters. Some lines will be text,
some will be commands to the formatter. Command lines
are identified by the occurrence of a "." in the first column
followed by a two letter abbreviation of the name of the
command.
In action the formatter may be in a "fill" mode, during

which paragraphs are formed by packing as many input words
as possible into the output lines, the lines being "right-justified"
(to produce an aligned right margin, like this paragraph) by
padding out with extra spaces between words'if necessary.
When not in "fill" mode the input text lines are output with-
out modification. When switching off filling, the words-already
gathered to go into the next output line are put out without
right justification. This action of forcing out a partially col-
lected line is called a break. Some of the commands implicitly
cause breaks when they are encountered, even though they
may not cause filling to be switched off.
We present the commands and briefly explain their actions:

"Filling" commands
fi Cause a break and switch on "fil" mode.
nf Switch off "fill" mode.
br Cause a break (but does not switch into or out of

of "fill" mode).

Page commands

bp n Begin page. n is an optional numeric argument, which,
if present, is taken as the number of the new page.

If not present the default is to increment the cur-
rent page number by one. Causes a break. If this
command would produce an entirely blank page
(but for header and footer titles), i.e., occurs at the
very top of a page, it merely adjusts the page num-
ber without creating the blank page.

pi n Set page length to be n lines. Default is n=66, does
not cause break.

he t Set the header to be printed at top of each page. t is
a string argument which becomes the new header.
The character "#" within the string is replaced by
the current page number. Does not cause a break.

fo t Set the footer title to be printed at bottom of each
page. Analogous to he command.

Is n Set line spacing to n (i.e., n=2 corresponds to double
spacing). Default is n=1, does not cause a break.

sp n Causes a break and produces n blank lines. Default is
n=1. Does not produce blank lines at the very top
of a page.

Line commands

ce n Cause a break and center the next n text lines (i.e.,
insert extra spaces if necessary to cause the text
lines to be centered within the current margins.)
Default is n=1. If another ce command is encoun-
tered whilst centering text lines, the new command's
value of n takes precedence.

-ul n Does not cause a break. Default is n=l. As with ce
command, encountering another ul command will
adjust the count of lines to be underlined.

rm n Set right margin to be n. Default is n=60, does not
cause a break.

in n Set left margin (indentation) to be n. Default is n=0,
does not cause a break.

ti n Cause a break and set the left margin for next output
line only to be n. Default is n=O.

Numeric arguments to commands may be preceded by a "+"
or "-",in which case the value is taken to be the current value
of the parameter being set incremented or decremented ac-
cordingly. An exception to this is the ti command which ad-
justs relative to the current left margin setting.
In order that the formatter behave reasonably with text con-

taining a minimum of formatting commands, input lines which
start with blanks or are entirely blank are treated as follows.
Lines empty but for blanks cause a break and a blank line

to be output (even at the top of a new page).
Lines starting with n blanks (but followed by other charac-

ters) where n>O cause a break and a temporary indent of +n.

B. The Organization ofour Specification
The formatting task may be characterized as follows: from

the input representation we extract the lines of text and the
associated information which will direct the layout of that
text. These lines are processed as directed to produce output
lines representing pages containing paragraphs, verbatim text,
headers, etc.
Our specification will follow this characterization, i.e., we
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will have a first stage in which the input is decoded to extract
the text lines and associate with each the information to
direct the formatting; and a second stage in which these lines +
information are processed into paragraphs, pages, etc. from
which output lines can be formed.
Thus, already we see a major divergence between our specifi-

cation and any reasonably efficient program-we have two
distinct stages connected by the passing of a bulky but con-
ceptually simple data structure, whereas an efficient program
would perform the whole operation in a single pass, incremen-
tally maintaining the current information and producing
output.
Now we tackle the decomposition of these stages.
Decoding Input to Associate Infonnation with (Text) Lines:

This breaks down into two more stages; the first to recognize
command lines and decode the type of command and argu-
ments (if any). The output of this is a sequence of elements,
each of which is either a (text) line (i.e., sequence of charac-
ters) or a command (some types of commands having argu-
ment values associated with them). Fig. 1 displays the overall
organizatiorn of our specification, and within it we call this
stage of the processing DECODE.
The second stage associates with eaQh text line a data struc-

ture to hold the information relevant to formatting that line,
e.g., margin values, page size, etc. We call this collection of
information an "infomap." Thus output from this, to the
second main stage of the whole formatting process is a se-
quence' of elements, each of which is a text-line + infomap.
Actually this is a slight oversimplification, insofar as we leave
commands of a few types within this sequence rather than
trying to force the information implied in the commands into
infomaps. The aberrant commands are:
sp (space down)-left untouched because it is only during

page formation that we may determine whether the blank
lines this generates would fall at the very top of a page (in
which case they are to be discarded), or whether they would
fit into the remaining space on the current page (if not they
fill it to the bottom, but do not overflow onto the next page).
bp (begin page)-left untouched because it is only during

page formation that we may determine the page number of the
current page, and this command might specify a relative
change to the page number rather than absolute.
br (break)-the sole purpose of this command is to delimit

collection of words to be accumulated into a single paragraph.
We call this stage DOCOMMANDS within Fig. 1. This de-

composes further into a separate stage for each command
wherever possible. The fi and nf commands (to switch filing
on and off) interact in such a way as to necessitate handling
together, as do the in and ti commands (indent and tempo-
rary indent). Apart from these pairs the commands are dealt
with in separate passes, the order of which is irrelevant.
Processing of Te-xt Lines-This breaks down into four dis-

tinct stages.
1) INTERMEDIATE: Do processing local to individual

text lines, i.e., center those lines which need centering by ad-
justing the margin values within their infomaps, follow each
character in text lines whose contents are to be underlined by
backspace and underline, and deal appropriately with text

lines which start with blanks and/or are entirely blank. Each
of these activities is done in a separate substage-they have
been grouped together here because they refer to information
and make changes purely within single text lines.
2) LINES: Within this stage paragraph formation is per-

formed and overlength lines are dealt with (resulting in a split
into two or more lines). The distinction between this and the
INTERMEDIATE stage is that this involves actions spread over
possibly several text lines. Paragraph formation is the most
interesting of the activities done in this stage. We break this
down into
* gathering the lines from which words to go into a single

paragraph are to be extracted;
* extract the words from these lines (and associate with

each word the "infomap" of the line from which it has been
extracted);
* squeeze as many of the words as possible into each suc-

cessive line to form a filled paragraph, and perform justifica-
tion on each such line. In forming each line we let the infomap
of the first word to go onto the line determine the charac-
teristics of the entire line (in particular, its margin sizes).
3) PAGES: The text lines to go into pages have been

formed in the previous stage, and within this stage these lines
are not modified in any way, merely accumulated into pages.
Again, a breakdown into subtasks is followed to accumulate
page-filling sequences of lines and form actual pages from
these.

4) OUTPUT: Finally, the sequence of pages is simplified
into a sequence of lines for output to some printing device. It
is here that we would tailor the output to whatever device was
to be the destinatipn (e.g., if the device had no backspace
character but could overprint an entire line, we would modify
those lines with backspace accordingly.)
We could provide further detail about each stage of process-

ing, however we feel that we have sufficiently demonstrated
the overall approach to decomposition of the problem. A por-
tion of the NPL code which forms our specification is pro-
vided in the Appendix.

C Implications ofHaving Constructed a Specification
We consider what benefits there may be from having' a for-

mal specification, and reflect on what the exercise has revealed
about formatting the specification in general.
1) Increased Understanding of Task: One consequence of

our attempt to produce as clear a specification as possible is
that it lead us to consider some aspects of formatting that we
might otherwise have overlooked.
An example of this arose during specification of paragraph-

ing, when words are extracted from the incoming text lines
and put into filled and justified lines. It is clear that the in-
formation associated with an input text line should become
the information associated with each of the words extracted
from that line. However, it is not so trivial to decide how the
information associated with several words will be used to
determine the information to be associated with the output
text line that they are to form, In our specification we chose
to let the information associated with the first word to go
onto a line determine the information for the entire line.
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lines (each a sequence of characters)
t DECODE-recognizes command lines and decodes them

(text) lines interspersed with commands

DOCOMMANDS-associates with each text line on "infonap
'4 f to hold formatting information values

(text) lines + infomaps interspersed with remaining commands
{ INTERMEDIATE-local line manipulation (underlining, etc.)

(text) lines + infomaps interspersed with remaining commands

LINES-form output lines (involving filling and justifying
paragraphs, centering lines between margins, etc.)

(text) lines + infomaps interspersed with remaining commands

PAGES-form output pages (generating header and footer
titles, padding with blank lines, etc.)

pages (each a sequence of (text) lines)
t OUTPUT-simplify to a sequence of lines

lines

Fig. 1. Structure of specification.

This is not the behavior of Kernighan and Plauger's efficient
formatter. Their program, when accumulating the words to
go into a filled line, is simultaneously taking notice of the in-
coming commands to change formatting values (in particular,
right margin value). Hence, in the middle of forming a fEied
line the right margin value might change, and the line formed
would reflect the latest value rather than the value prevalent
at the start of the line. We speculate that this is an implicit
consequence of their aim to design an efficient program rather
than the result of a conscious choice between alternatives.
Their algorithm may exhibit unusual behavior if during ac-
cumulation of words to go into a line the right margin should
decrease to less than that needed to accommodate the words
accumulated so far-the effect is to cause those words to be
put out in a line whose rightmost margin will be neither the
old right margin value nor the new smaller value. For example,

Input

parameters should have when they occur in the middle of
forming a line/page. (Of course, commands that cause a new
line/page to be started have a clear intent-it is only those
which adjust parameters without terminating the current line/
page whose precise effect is unobvious).
In the same way that we must decide how the information

associated with the words to go into a line should determine
the information for that line, we also must decide how the in-
formation associated with the lines to go into a page should
determine the information for that page. To be consistent we
choose to let the information of the first line serve as the in-
formation for the entire page.
Oddities of Line Filling and Page Fonnation: Some of the

consequences of permitting parameter changes to occur with-
out forcing line/page breaks are rather strange. For example,

Our Specification's
Output

Kernighan & Plauger's
Program's Output

.rm 14

. f
AA BB CC DD EE FF
GG HH II JJ KK LL MM
.rm 5
NN 00 PP QQ RR SS

AA BB
FF GG
KK LL
PP QQ
RR SS

CC DD EE
HH II JJ
MM NN 00

AA
FF
KK
NN
PP
RR

BB CC DD EE
GG HH II JJ
LL MM
00
QQ
SS

Our point is not that our specification exhibits the "right"
behavior, but rather that in its construction we were led to
consideration of the options available. Regardless of whether
we make any further use of our specifications, we would claim
that, by being led to such considerations, we benefit in gaining
a better understanding of the task in question.
Some further observations that we are led to make are as

follows.
Page Formation: There is a close parallel between filling

lines with words and filling pages with lines. In each case we
must decide what effect commands which adjust line/page

Input

.rm 14

. fI

AA BB CC DD EE FF
GG HH II JJ KK LL
. rm 7
MM NN
.rm 14
00 PP QQ RR SS TT
UU VV WW XX YY ZZ

Output

AA BB CC DD
FF GG HH II
KK LL MM NN
PP QQ RR SS
UW W WW XX

zz

EE
JJ
00
TT
YY
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We might be surprised to observe no lines with right margin set
to 7 in the output. This is a consequence of our decision to let
a line's first word's information set the characteristics for the
entire line-here the decreased right margin had no effect on
the line already in progress, and by the time the next line be-
gins, the margin has been readjusted!
We might also be surprised to learn that the obvious policy

of filling up the current line with as many words as possible
before starting the next line does not necessarily lead to the
paragraph of the shortest overall length! For example,

Input Our Output

mation, but not margin sizes). An alternative would have been
to complicate the stage that gathers "infomaps" in order to
partition the information so that each stage may be given only
the portion of the information necessary for its activities.
Another example is our decision to leave some of the com-

mands (br, bp, and sp) interspersed with the (text) lines, rather
than go to the extra effort of encoding them into infomaps.
Again, we see this as a compromise rather than a clear-cut best
choice.
4) Availability of a Precise Specification: Our specification

Alternative

.rm 15
AAA BBB CCC DDD
. rm 8
EE FF GG HH
III JJJ

AAA BBB CCC DDD
EE FF GG
HH III
JJJ

AAA
DDD
III

BBB CCC
EE FF GG HH
JJJ

Here by allowing word "DDD" to spill over onto a new (and
hence longer) line, more of the following words can be accom-
modated before the margin shrinkage comes into effect, result-
ing in a decrease in the paragraph length.
These behaviors suggest that we should consider revising our

definition of the formatting process to insist that commands
modifying parameters of a line/page always have the effect of
terminating the current line/page.
2) Availabilit-y of a Clear Specification: We have more con-

fidence that we understand the behavior implied by our
specification than that of Kernighan and Plauger's efficient
program. This may be due in part to our having performed
the design of our specification, but served only as a reader of
their program. However, a good deal of our confidence may
be attributed to the deliberately simple structure of our speci-
fication, from which we are better able to perceive how the
portions interact, and the likelihood of there being anomalous
behavior in circumstances that we had not anticipated much
reduced.
3) Areas ofDissatisfaction: We are reasonably happy about

the overall quality of our resulting specification; however,
we perceive some areas in which we harbor some lingering
dissatisfactions.
With respect to clarity, we were forced to make compro-

mises between complicating some portions of the specification
in order to simplify others. An example of this is to be found
in the method by which information to control line and page
formation is gathered and disseminated. Ideally, at any stage
which makes use of some of the information it should be evi-
dent what information is necessary for the activities of that
stage. We have simplified the gathering and passing of infor-
mation between stages so that each stage receives text lines
together with so called "infomaps," containing all the asso-
ciated information. Hence, it is only through inspection of the
activities that we may determine which portions of informa-
tion are actually required and which are not (e.g., to determine
that the pages formation stage makes use of page-length infor-

is formal as opposed to informal; hence we may use it in the
following ways.
Testing: The NPL interpreter may be used to run the speci-

fication on small examples to test its overall behavior. The
inefficient nature of the specification prohibits extensive
testing; however, its design, in which the overall task is decom-
posed into smaller and simpler subtasks, permits extensive
testing of the components. In practice, our mode of construc-
tion and testing of NPL specifications goes as follows: first, we
design a specification in the manner outlined for the test for-
matter; second, we turn this design into an NPL program,
which we feed into the type checker, at which point syntactic
errors are discovered and removed; third, we are left with a
syntactically correct program, which we may try small test
cases on, and the components of which we may test exten-
sively. We find that the few errors present in the program are
glaringly obvious and relatively simple in nature (both to un-
derstand and correct).

Verification: We may attempt to prove properties of our
specification. The applicative nature of NPL and the simplic-
ity of our specification make proofs easier. Indeed, Burstall
and Darlington acknowledge the influence of Boyer and
Moore's successful theorem prover for properties of Lisp pro-
grams (see [5] and [6]) on their decision to investigate the
transformation of recursion equations. Although we do not
have a theorem prover for NPL (or HOPE) programs, the
domain of Aubin's prover ([1]) is a language of recursion
equations very similar to NPL, and would seem to be most
appropriate.

Transformation: At the start we remarked on how NPL
originated from Burstall and Darlington's transformation
work. Our intent in producing specifications in NPL is to then
transform them into more efficient NPL programs. Darlington
has created a transformation system for NPL, described in
[131 . His system is more geared to researching the extent to
which transformation techniques may be automated than to
performing large transformations which, in the present state-
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of-the-art, require significant user guidance to be practical. We
have engineered a transformation system for NPL which is
designed primarily to support the human user in performing
large transformations-details of this system may be found in
[18]. With this we were able to transform our text-formatter
specification into an NPL program with the structure and be-
havior of a more conventional algorithm (i.e., a one-pass algo-
rithm in which formatted output is produced as the input is
consumed, with the consequent vast improvement in efficiency
over our specification, at the expense of clarity). All the steps
of this transformation process were machine applied, hence we
have confidence that the result of the transformation is in fact
equivalent to our specification. Furthermore, the record of
human direction to the transformation system is preserved as a
manipulable structure in its own right-one which may be
read, reapplied, modified, etc.
Maintenance: We would like to see the specification, trans-

formed efficient program, and record of transformation serve
together to support maintenance. Rather than attempting to
modify the efficient program directly-an error-prone activity
at best-we would perform our modifications upon the speci-
fication (which, because of its very nature should admit to
easier and more error-free maintenance) and reperform the
transformafion to produce a modified efficient program.
Should the nature of the modification be concerned solely
with adjusting the efficiency rather than the functional be-
havior of the program, we would adjust the transformation
while leaving the specification the same. These are, at present,
wishes only. A good deal of research needs to be done into
the maintenance aspect of transformation. See [15] for a
report of preliminary experiments in this direction.
Alternative Evaluation: The NPL interpreter evaluates NPL

programs in a straightforward call-by-value fashion. However,
the applicative nature of recursion equations makes them
neutral to the order of evaluation (except perhaps for loss of
termination). Schwarz [22] investigates how we may augment
an NPL program with control information to direct a more
sophisticated interpreter in its selection of evaluation mecha-
nism. By this means we may make some improvement to the
efficiency of the interpretation without resorting to trans-
formation; see also [21] and [11] for related work on the
language Prolog. Darlington has developed some ideas on how
to evaluate recursion equations on parallel hardware, and has
observed that the specification style of lavish decomposition is
suited to taking full advantage of parallel processing power.

IV. CONCLUSIONS
A. Accomplishments
We have constructed a specification of a simple text for-

matter, and would like to think that our specification has the
virtues of clarity, comprehensibility, and precision. We ascribe
the success we might have had to the influences inherent from
using an applicative recursion equation language, and to the
deliberate decision to disregard all consideration of efficiency.
We feel that we have benefited from the experience both by

emerging with a formal specification, and by having gained
some insights into the task of formatting itself. Further details
of our efforts, both specification and transformation, may be
found in [17].

B. From NPL to HOPE
As we remarked earlier, the language NPL has since been de-

veloped further to become HOPE; the two main extensions,
and how they might have been of use to us, are as follows.
Higher Order: NPL is a first-order language, without the

power of passing functions as values to functions. We do not
think the availability of this feature would have influenced
our design of the specification, merely simplified expression
of some of the low-level activities.
Modularity: NPL contains a very crude mechanism for in-

formation hiding. Within HOPE this mechanism has been
significantly extended into a modularization facility. We
might make good use of this feature to make explicit the
separation of the various stages of our specification. We do
not think this would have influenced us to adopting a very
different design, rather encouraged us (by the support it pro-
vides) to make clearer the communication of information
within the established configuration.

C. AvenuesforFurtherResearch
Restricting our attention to the specification aspect, we see

the following possibilities for investigation.
Modularity: We speculate that the apparent compromise

between simplicity of some portions of the specification and
explicating the necessary and unnecessary communication be-
tween portions signifies a weakness in the modularization of
our program. We require experience with facilities such as
those incorporated into HOPE to determine whether this
problem can be partially or wholly overcome by language
support.
Explanation: Although we are reasonably happy with our

NPL specification, we recognize that it will not suffice as a
self-explanatory document; we ascribe its failing in this respect
to two factors: first, it is written without redundant informa-
tion, and makes no attempt to build up from anew to an un-
derstanding of the whole; second, the decisions made during
construction and the reasons for making those decisions are
not evident in the final product of the construction process.
There is a need for investigation into providing such support
for specifications.

APPENDIX
PORTIONS OF NPL SPECIFICATION OF TEXT FORMATTER
Portions of the NPL code forming our specification are

shown. In order to make these comprehensible to the reader,
we first describe NPL notation, illustrated with some trivial
examples.

Introduction to NPL Notation
NPL programs consist of data declarations and function

definitions.
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A data declaration is used to introduce a new data type
along with the data constructors which create elements of that
type. For example,

data num = 0, succ(num)

defines a data type called num (to represent natural numbers)
with data constructors 0 and succ. So the elements ofnum are
0, succ(O), succ(succ(O)), . . .

A function definition consists of a type declaration and a
sequence of one or more equations, where each equation spec-
ifies the function over some subset of the possible argument
values. For example,

type declaration
Factorial : num -+ num

equations
Factorial(O) ¢ succ(0)
Factorial( suCC(N) ) ( SUCC(N)) * Factorial(N)

defines the usual factorial function.
The type declaration indicates that Factorial takes a single

argument of type num, and produces a result of type num.
The two equations specify Factorial; each is of the form

pattern expression. To evaluate an expression, the equa-
tions are applied as rewrite rules; the patterns of the equations
are matched against portions of the expression (in a leftmost
innermost first order), and a portion successfully matched by
an equation's pattern is replaced by the correspondingly in-
stantiated expression of that equation. For example,

Factorial(succ(O)) applying the second equation of
Factorial, evaluates to

(succ(O)) * Factorial(O) and applying the first eq-
uation, to

(succ(O)) * succ(O) etc.

Function symbols may be used as prefix or infix operators,
as is "*' (multiplication) in the above.
The data type list may be defined as follows:

data list alpha = nil, alpha :: list alpha

using the infix symbol "::" as the constructor (to CONS to-
gether lists), e.g., 1::(2::(3::nil)).
We use the following abbreviation for lists: abbreviate

el:-:(e2:: ::nil) as [el, e2, *. Thus [ =nil. [1I = 1:: nil,
[6, 5, 4] = 6::(5::(4::nil)), etc.
Hence the conventional functions Append and Reverse on

lists may be defined by

Append : list alpha x list alpha -+ list alpha
Append( [],L2)`=L2
Append(A::Ll, L2 ) 4 A::(Append(L1, L2))

Reverse : list alpha - list alpha
Reverse( [] ) [ ]
Reverse(A::L ) Append(Reverse(L), [A])

We commonly use the symbol "< >" as an infix form of
Append, so L1<> L2 = Append( LI, L2 ).
Font conventions-to enhance readability, we use differing

fonts as follows:

boldface for function names (e.g., Factorial),
italics for type names (e.g., num),
roman for constructor names (e.g., succ),
SMALL CAPITALS for variable names in equations (e.g., N).

Portions from the DOCOMMANDS Stage ofProcessing
The DOCOMMANDS stage associates with each text line a

data structure to hold the information relevant to formatting
that line. The data types we are dealing with include:

* command defined by data command = br, fi, nf, etc.
* argument defined by data argument = unsigned(num),

signed(sign,num), string(list character), null.
* text-or-command-line defined by data text-or-command-

line = text(list character), cmd(command,argument).
* infomap to hold a "map" of the information relevant to

formatting a line, further details omitted here.
* itext-or-command-line defined by data itext-or-command-

line = itext(infomap,listcharacter), cmd(command,argument).
The first activity of the DOCOMMANDS stage is to associate

with each text-line an initially empty infomap, done by func-
tion Initializelnfomaps.

InitializeInfomaps: list text-or-command-line -+ list
itext-or-command-line

Initializelnfomaps(L) 4 AddMap( empty-map , L)
AddMap : infomap x list text-or-command-line -+ list

itext-or-command-line
AddMap(MAP, [ ]) 4i[ ]
AddMap(MAP , text(CHARACTERS) :: L)

itext( MAP , CHARACTERS):: AddMap( MAP ,L)
AddMap ( MAP , cmd (C,A) :: L)

4 cmd(C,A) :: AddMap(MAP , L)
The first equation of AddMap corresponds to the trivial case

when its input is exhausted.
The second equation corresponds to the first element of the

list of text-or-command-lines being a text-line, in which event
the infomap is associated with the characters of that line.
The last equation corresponds to the first element of the list

of text-or-command-lines being a command-line, in which
event it is passed through unchanged.
Thereafter there are separate passes for each type of com-

mand, going through the list of itext-or-command-lines and
adding the necessary information to the infomaps.
For example, processing of the ce (center) commands will

result in each itext-line's infomap being augmented with true
or false to denote whether or not that line is to be centered
in the output.
Function DoCentre does this processing pass, using a sub-

sidiary function SubDoCentre, and an initializing constant
InitCentreCount to set the default number of lines we want
centered at the start of the document.

DoCentre: list itext-or-command-line - list
itext-or-command-line

DoCentre(L) 4 SubDoCentre(L, InitCentreCount)
SubDoCentre : list itext-or-command-line x num -+ list

itext-or-command-line
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SubDoCentre([ I, COUNT ) ` [ ]
SubDoCentre( itext( IMAP, CHARS):: L, 0)

¢ itext( AddToMap(IMAP, ce-value false),
CHARS):: SubDoCentre( L, 0)

SubDoCentre(itext (IMAP, CHARS):: L, SUCC(COUNT))
¢ itext( AddToMap(nmAp, ce-value ,true),

CHARS ):: SubDoCentre( L, COUNT)

SubDoCentre( cmd(C,ARG):: L , COUNT )
¢ cmd(br,null):: SubDoCentre( L,

NewValue( COUNTF, ARG, SUCC(O),
0, Huge)) if c = ce

4 cmd(C,ARG):: SubDoCentre(L, COUNT)
ifnot

The first equation for SubDoCentre corresponds to the
trivial case when it has exhausted its input.
The next two correspond to the first element of the list of

itext-or-command-lines being an itext-line. If the second
argument, a count of the number of lines still to be centered,
is 0, the centering value added into the infomap (done by
AddToMap) is false, and SubDoCentre is applied to the re-

mainder of the input. If it is nonzero, the centering value
added is true, and the count is decremented in the recursive
call of SubDoCentre.
The last equation corresponds to the first element of the

list of itext-or-command-lines being a command-line. Dif-
ferent actions take place depending on whether or not the
command is a ce command-if it is, then a br command-line
is inserted, and SubDoCentre is applied to the remainder of
the input with the count adjusted appropriately (calculated by
NewValue); if it is not, then the command is passed through
and SubDoCentre applied to the remainder of the input with
its count unchanged.
An equation of the form

pattern 4 expression, if predicate,
¢ expression2 if predicate2

¢ expressionn ifnot

rewrites to the first expression who's predicate following an

if is true, and the expression before the ifnot if they are all
false. This is useful here because it is impossible to write the
pattern for a single equation to match the case of a cmd(C,ARG)
command-line where c is anything but a ce command.

Portions from the LINES Stage ofProcessing
Within this stage text lines for output are formed. We show

the functions that are used to produce unfilled lines.

Unfilled-I-Lines takes an infomap and a list of characters,
and adds the infomap to the characters to form an unfilled
itext-line. The desired indentation is obtained by prefixing
the characters with blanks, equal in number to the ti-value
(temporary indentation) in the infomap. If there are so many

characters that, after indenting, they would extend beyond
the right 'margin (again, a value in the infomap), then the ex-

cess characters are to be put into a successive line or lines.
Hence the output of Unfilled-I-Lines is a list of itext-lines,

rather than a single one. Subsidiary function UnfilledLines
handles the details of splitting the characters over multiple
lines if necessary.

Unfilled-I-Lines: infomap x list character -* list
itext-or-command-line

Unfilled-I-Lines( MAP, CHARACTERS)
¢ AddMap( MAP, UnfilledLines(MakeBlanks

(INDENTATION )<> CHARACTERS,
RIGHT-MARGIN))

where INDENTATION = RetrieveFromMap
(MAP, ti-value)

where RIGHT-MARGIN = RetrieveFromMap
(MAP, rm-value)

UnfilledLines: list character x num -+ list
text-or-command line

UnfilledLines( CHARACTERS , RIGHT-MARGIN)
4 teXt(FIRST-LINE-CHARACTERS)

UnfilledOverflowLines( REMAINDER)
where FIRST-LINE-CHARACTERS , REMAINDER =

SphtCharacters( RIGHT-MARGIN, CHARACTERS)

UnfflledLines produces a list of unfdled text-lines from the
list of characters. The first text-line may have a width of at
most right-margin. SplitCharacters splits off only as many
characters as may be fit into this width, and the remainder
are passed on to UnfilledOverflowLines, to put into unin-
dented pagewidth wide lines.

UnfllledOverflowLines : list character -* list
itext-or-command-line

UnfilledOverflowLines([ ] ) [ ]
UnfldledOverflowLines(CHAR :: CHARACTERS)

¢ text(LEADING-CHARS) :; UnfilledOverflowLines
(REMAINDER)

where LEADING-CHARS, REMAINDER =
SplitCharacters(PageWidth, CHAR :: CHARACTERS)

UnfilledOverflowLines produces lines of width at most
PageWidth from the characters it is given. No indentation is
performed on these lines.
MakeBlanks and SplitCharacters have relatively trivial de-

fmitions (omitted here).
For example,

characters = AVeryLongLineWithFarTooManyCharacterslnlt.
indentation = 5
right margin = 12
page width = 14

should result in splitting the characters into

AVeryLo
ngLineWithFarT
ooManyCharacte
rsInIt.

Note that it is easy to make minor modifications to the for-
matting of unfilled lines. For example, should we wish to
simply discard the excess characters that do not fit onto the
first line, we would modify UnfilledOverflowLines to always
return [] -
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Alternatively, if we still wanted the excess characters put
onto successive lines, but wanted those lines indented by the
same amount as the first line, then we would modify Unfilled-
I-Lines and UnfilledLines to pass the indentation value through
to UnfilledOverflowLines, and modify the latter to append
that many blanks to the list of characters given to SplitCharac-
ters; thus,

UnfilledOverflowLines( cHAR :: CHARACTERS,
INDENTATION)

etext(LEADING-CHARS) :: UnfilledOverflowLines
(REMAINDER, INDENTATION )

where LEADING-CHARS, REMAINDER =

SplitCharacters(PageWidth , MakeBlanks
(INDENTATION)< >CHAR :: CHARACTERS)
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